Google Scholar

PDFs available upon request.

Graham, E. A.P. Camargo, R. Wu, R. Neches , M. Nolan , D. Paez-Espino, J. Blanchard, N. Kyrpides, J. Jansson, J. McDermott, K. Hofmockel, X. Jun, J. Rodrigues, Z.B. Freedman, P. Baldrian, M Štursová, K. DeAngelis, S. Lee, F. Godoy-Vitorino, Y.K. Yeoh, H. Cadillo-Quiroz, S. Tringe, A. Chauhan, D. Cowan, M. Van Goethem, T. Woyke, N. Dove , K. Konstantinidis, T. Juenger, S. Hart , D. Myrold, B. Bohannan, M. Schmer, N. Palmer, K. Nüsslein, T. Makhalanyane, K. Dynarski, N. Taş, G. Nicol, C. Hazard, E. Scully, K. Jain, D. Madamwar, A. Bissett, P. Constant, R. Oliveira, C. Takacs-Vesbach, M. Cregger, A Carrell, D. Klingeman, N. Pietrasiak. In Press. A global atlas of soil viruses reveals unexplored biodiversity and potential biogeochemical impacts. Nature Microbiology.

Siemering, G.S., F.J. Arriaga, G.A. Cagle, J.M. Van Beek, and Z.B. Freedman 2024. Impacts of vegetable processing and cheese making effluent on soil microbial functional diversity, community structure, and denitrification potential of land treatment systems. Water Environment Research. 96(5), e11036.

Grover, S., H. Anderson, C.N. Kelly, J. Schuler, M.D. Ruark, and Z.B. Freedman. 2024. Early production of switchgrass (Panicum virgatum L.) and willow (Salix spp.) indicates carbon accumulation potential in Appalachian reclaimed mine and agriculture soil. Soil Science Society of America Journal. 88, 602–619.

Piñeiro Nevado, J., C. Dang, J. Walkup, T. Kuzniar, R. Winslett, S. Blazewicz, Z.B. Freedman, E. Brzostek, and E.M. Morrissey. 2024. Shifts in bacterial traits under chronic nitrogen deposition align with soil processes in arbuscular, but not ectomycorrhizal‐associated trees. Global Change Biology, 30(1), e17030.

Kane, J. L., K.B. Liseski, C. Dang, Z.B. Freedman, & E.M. Morrissey. 2024. Trade or scavenge? Miscanthus-microbiome interactions depend upon soil fertility. Applied Soil Ecology, 196, 105289.

Kane, J. L., R.G. Schartiger, N.K. Daniels, Z.B. Freedman, L.M. McDonald, J.G. Skousen, and E.M. Morrissey. 2023. Bioenergy crop Miscanthus x giganteus acts as an ecosystem engineer to increase bacterial diversity and soil organic matter on marginal land. Soil Biology and Biochemistry, 186, 109178.

Ye, Y., H. Wang, J. Luan, J. Ma, A. Ming, B. Niu, C. Liu, Z.B. Freedman, J. Wang, and S. Liu. 2023. Nitrogen-fixing tree species modulate species richness effects on soil aggregate-associated organic carbon fractions. Forest Ecology and Management, 546, p.121315.

Wang, H., Y. Ding, Y. Zhang, J. Wang, Z. B. Freedman, P. Liu, W. Cong, J. Wang, R. Zang, S. Liu. 2023. Evenness of soil organic carbon chemical components changes with tree species richness, composition and functional diversity across forests in China. Global Change Biology, 29(10), 2852-2864.

Kane, J. L., J. Kotcon, Z. B. Freedman, and E. M. Morrissey. 2023. Fungivorous nematodes drive microbial diversity and carbon cycling in soil. Ecology. e3844.

Kane, J. L., M. C. Robinson, R. G. Schartiger, Z. B. Freedman, L. M. McDonald, J. G. Skousen & E. M. Morrissey. 2022. Nutrient management and bioaugmentation interactively shape plant–microbe interactions in Miscanthus × giganteus. Global Change Biology Bioenergy. 14: 1235–1249.

Martin, G., E. M. Morrissey, W. P. Carson, and Z. B. Freedman. 2022. A legacy of fire emerges from multiple disturbances to most shape microbial and nitrogen dynamics in a deciduous forest. Soil Biology and Biochemistry. 169: 108672.

Zhang, Y., Z. B. Freedman, A. E. Hartemink, T. Whitman, and J. Huang. 2022. Characterizing soil microbial properties using MIR spectra across 12 ecoclimatic zones (NEON sites). Geoderma. 409: 115647.

Kelly, C. N., J. Koos, T. Griggs, and Z. B. Freedman. 2022. Prescribed defoliation strategies influence soil carbon and nitrous oxide potential in pastures. Agronomy Journal. 114: 2264– 2279. *research highlighted in CSA News

Freedman, Z. B., A. McGrew, B. Baiser, M. Besson, D. Gravel, T. Poisot, S. Record, L. Trotta, and N. Gotelli. 2021. Environment-host-microbial interactions shape the Sarracenia purpurea microbiome at the continental scale. Ecology. 102(5): e03308.

Bittleston, L. S., Z. B. Freedman, J. R. Bernadin, J. J. Grothjan, E. B. Young, S. Record, B. Baiser, and S. M. Gray. 2021. Exploring microbiome functional dynamics through space and time with trait-based theory. mSystems. 6(4): e00530-21.

Carrara, J., C. Walter, Z. B. Freedman, J. S. Hawkins, and E. R. Brzostek. 2021. Differences in microbial community response to nitrogen fertilization result in unique enzyme shifts between arbuscular and ectomycorrhizal dominated soils. Global Change Biology. 27(10): 2049-2060.

Dang, C., E. Kellner, G. Martin, Z. B. Freedman, J. Hubbart, K. Stephan, C. Kelly, and E. M. Morrissey. 2021. Land use intensification destabilizes stream microbial biodiversity and decreases metabolic efficiency. Science of The Total Environment. 767: 145440.

DeForest, J., R. Dorkoski, Z. B. Freedman, and K. Smemo. 2021. Multi-year soil microbial and extracellular phosphorus enzyme response to lime and phosphate addition in temperate hardwood forests. Plant and Soil. 464: 391–404.

Martin, G., C. Dang, E. M. Morrissey, E. Kellner, J. Hubbart, K. Stephan, E. Kutta, C. Kelly, and Z. B. Freedman. 2021. Stream sediment bacterial communities exhibit temporally-consistent and distinct thresholds to land use change in a mixed-use watershed. FEMS Microbiology Ecology. 97(2): fiaa256.

Kane, J., E. M. Morrissey, J. Skousen, and Z. B. Freedman. 2020. Soil microbial succession following surface mining is governed primarily by deterministic factors. FEMS Microbiology Ecology. 96(11): fiaa114.

Zhang, X., S. Liu, J. Wang, Y. Huang, Z. B. Freedman, S. Fu, H. Wang, X. Li, M. Yao, and X. Liu. 2020. Local community assembly mechanisms shape soil bacterial β-diversity patterns along latitudinal gradients in eastern China. Nature Communications. 11: 5428.

Walkup, J., Z. B. Freedman, J. Kotcon, and E. M. Morrissey. 2020. Pasture in crop rotations influences microbial biodiversity and function reducing the potential for nitrogen loss from compost. Agriculture, Ecosystems & Environment. 304: 107122.

Zak, D. R., W. A. Argiroff, Z. B. Freedman, R. A. Upchurch, and K. J. Romanowicz. 2019. Anthropogenic N Deposition, Fungal Gene Expression, and an Increasing Soil Carbon Sink in the Northern HemisphereEcology. 100(10): e02804.

Landesman, B., Freedman, Z. B., and D. Nelson. 2019. Seasonal, sub-seasonal and diurnal variation of soil bacterial community composition in a temperate deciduous forestFEMS Microbiology Ecology. 95(2): fiz002.

Entwistle, E. M., K. J. Romanowicz, W. A. Argiroff, Z. B. Freedman , J. J. Morris, and D. R. Zak. 2018. Anthropogenic N depositionalters the composition of expressed class II fungal peroxidasesApplied and Environmental Microbiology. 84(9): e02816-17.

Kellner, E., J. Hubbart, K. Stephan, E. M. Morrissey, Z. B. Freedman, E. Kutta, and C. Kelly. 2018. Characterization of sub-watershed-scale stream chemistry regimes in an Appalachian mixed-land-use watershedEnvironmental Monitoring and Assessment. 190(10): 586.

Cline, L. C., D. R. Zak, R. A. Upchurch, Z. B. Freedman , and A. R. Peschel. 2017. Soil microbial communities and elk foraging intensity: implications for soil biogeochemical cycling in the sagebrush steppeEcology Letters. 20: 202–211.

Zak, D. R., Z. B. Freedman, R. A. Upchurch, M. Stephens, and I. Kögel-Knabner. 2017. Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical compositionGlobal Change Biology. 23: 933–944.

Freedman, Z. B., R. A. Upchurch, and D. R. Zak. 2016. Microbial potential for ecosystem N loss is increased by experimental N depositionPLoS ONE. doi: 10.1371/journal.pone.0164531

*Romanowicz, K. J., Z. B. Freedman, R. A. Upchurch, W. A. Argiroff, and D. R. Zak. 2016. Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture FEMS Microbiology Ecology. 92: w149.

*Selected as Editor’s Choice.

Freedman, Z. B., R. A. Upchurch, D. R. Zak, and L. C. Cline. 2016. Anthropogenic N deposition slows decay by favoring bacterial metabolism: Insights from metagenomic analysesFrontiers in Microbiology. 7: 259.

Freedman, Z. B., and D. R. Zak. 2015. Atmospheric N deposition alters connectance, but not functional potential among saprotrophic bacterial communitiesMolecular Ecology. 24: 3170-3180.

Freedman, Z. B., R. A. Upchurch, K. J. Romanowicz, and D. R. Zak. 2015. Differential responses of total and active soil microbial communities to future rates of atmospheric N depositionSoil Biology and Biochemistry. 90: 275-282.

Freedman, Z. B., and D. R. Zak. 2015. Soil bacterial communities are shaped by dispersal limitation and environmental filtering: evidence from a long-term chronosequence. Environmental Microbiology. 17: 3208-3218.

Peschel, A., D. R. Zak, L. C. Cline, and Z. B. Freedman. 2015. Elk, sagebrush, and saprotrophs: indirect top-down control on microbial community composition and functionEcology. 96: 2383–2393.

Freedman, Z. B., and D. R. Zak. 2014. Atmospheric N deposition increases bacterial laccase-like multicopper oxidases:implications for organic matter decayApplied and Environmental Microbiology. 80: 4460-4468.

Selected for Editor’s Spotlight.

Eisenlord, S. D., Z. B. Freedman , D. R. Zak. K. Xue, X. He, and J. Zhou. 2013. Microbial mechanisms mediating increased soil C storage under elevated atmospheric N depositionApplied and Environmental Microbiology. 79: 1191-1182.

Freedman, Z. B., S. D. Eisenlord, D. R. Zak, K. Xue, X. He, and J. Zhou. 2013. Towards a molecular understanding of N cycling in northern hardwood forests under future rates of N depositionSoil Biology and Biochemistry. 66: 130-138.

Freedman, Z. B., C. Zhu, and T. Barkay. 2012. Mercury resistance and mercuric reductase activities and expression among chemotrophic thermophilic Aquificae Applied and Environmental Microbiology. 78: 6568-6575.

Wang, Y., Z. B. Freedman, P. Lu-Irving, R. Kaletsky, and T. Barkay. 2009. An initial characterization of the mercury resistance (mer) system of the thermophilic bacterium Thermus thermophilus HB27FEMS Microbiology Ecology. 67: 118-129.

Lefcort, H., Z. B. Freedman, S. House, and M. Pendleton. 2008. Hormetic effects of heavy metals in aquatic snails: is a little bit of pollution good?  EcoHealth. 5: 10-17.